ON COMPLEMENTED NONABELIAN CHIEF FACTORS OF A FINITE GROUP*

BY

Paz Jiménez-Seral

Departamento de Matemáticas, Universidad de Zaragoza
50009 Zaragoza, España
e-mail: pas@posta.unizar.es

AND

Julio P. Lafuente

Departamento de Matemática e Informática, Universidad Pública de Navarra
Campus Arrosadia s/n, 31006 Pamplona, Spain
e-mail: lafuente@upna.es

ABSTRACT

The number of chief factors which are complemented in a finite group G may not be the same in two chief series of G, despite what occurs with the number of frattini chief factors or of chief factors which are complemented by a maximal subgroup of G. In this paper we determine the possible changes on that number. These changes can only occur in a certain type of nonabelian chief factors. All groups considered in this paper are assumed to be finite.

1. G-equivalent G-groups

Recall that a G-group A is a group A with a homomorphism $\theta: G \to \operatorname{Aut} A$. If there is no confusion we put $a^g = a^{\theta(g)}$, if $a \in A$, $g \in G$. Given a G-group A we have the corresponding semidirect product GA, where the multiplication is given by $g_1a_1 \cdot g_2a_2 = g_1g_2a_1^{g_2}a_2$, $g_i \in G$, $a_i \in A$, i = 1, 2. Observe that $\ker \theta = \operatorname{C}_G(A)$.

Two G-groups A and B are said to be G-isomorphic, denoted $A \cong_G B$, if there exists an isomorphism $\varphi \colon A \to B$ such that $a^{g\varphi} = a^{\varphi g}$, $a \in A$, $g \in G$. Then we say that φ is a G-isomorphism.

^{*} Both authors were supported in part by DGICYT, PB94-1048. Received November 24, 1996 and in revised form March 11, 1997

(1.1) Definition: Let A and B be two G-groups. We say that they are G-equivalent and put $A \sim_G B$, if there is an isomorphism $\Phi: GA \to GB$ such that the following diagram commutes:

Then the extensions $A \mapsto GA \twoheadrightarrow G$ and $B \mapsto GB \twoheadrightarrow G$ are said to be equivalent. They are in fact isomorphic in the category of extensions by G and the pair (φ, Φ) is an isomorphism in the terminology of Gruenberg [5].

It is immediate that this relation is an equivalence relation.

On the other hand, if $\varphi: A \to B$ is a G-isomorphism, then $(ga)^{\Phi} = ga^{\varphi}, g \in G$, $a \in A$, defines an isomorphism $\Phi: GA \to GB$ which makes the above diagram commutative. That is, two G-isomorphic G-groups are G-equivalent.

The converse is not true. Consider, for instance, $G = A \times B$, where A and B are isomorphic nonabelian simple groups. Then A and B are G-equivalent, but not G-isomorphic, as $C_G(A) = B$ and $C_G(B) = A$.

In this context the nonabelian cohomology is useful. We follow the terminology of Serre in [12]. Given a G-group B and a 1-cocycle $\beta \in \mathbb{Z}^1(G,B)$, then $b^{\eta(g)} = b^{gg^{\beta}}$ defines a homomorphism $\eta \colon G \to \operatorname{Aut} B$. The corresponding G-group is denoted B_{β} and called the G-group obtained from B by torsion via β .

(1.2) PROPOSITION: Let A and B be two G-groups. They are G-equivalent if and only if there exists a 1-cocycle $\beta \in \mathbb{Z}^1(G,B)$ such that $A \cong_G B_\beta$ (i.e. if there exists an isomorphism $\varphi \colon A \to B$ such that $a^{g\varphi} = a^{\varphi gg^\beta}$, $a \in A$, $g \in G$).

Proof: From right to left: Define $\Phi: GA \to GB$ by $(ga)^{\Phi} = gg^{\beta}a^{\varphi}$. The other direction: Define $\beta: G \to B$ by $g^{\beta} = g^{-1}g^{\Phi}$.

Observe that we are in fact involved with the coupling $\chi: G \to \text{Out } A$ induced by the G-group A, i.e. by the homomorphism $\theta: G \to \text{Aut } A$. In the case where A is a nonabelian irreducible G-group, we are with the corresponding unique class of equivalence of extensions of the centerless group A by G (e.g. 11.4.10 of [11]).

We have, as an immediate consequence, that two G-equivalent G-groups are similar in the sense of Kovács and Newman [10].

On the other hand, two abelian G-groups are G-equivalent if and only if they are G-isomorphic. (If A is an abelian G-group, then Inn A = 1, hence any torsion—in the above sense— on A is trivial.)

However, as we have seen, for nonabelian G-groups the G-equivalence is strictly weaker than G-isomorphism, and provides some criteria, as the one in the next proposition.

Recall that a chief factor H/K of G is frattini if $H/K \leq \Phi(G/K)$. It is complemented if there exists a subgroup U of G such that UH = G and $U \cap H = K$ (then U is a complement of H/K in G). An abelian chief factor of G is non-frattini if and only if it is complemented, but that is not true for nonabelian chief factors, which are obviously in any case non-frattini.

(1.3) Proposition: Let H/K be a nonabelian chief factor of G. Then H/K is complemented in G if and only if there exists a G-group B, $B \sim_G H/K$, such that $H \leq C_G(B)$.

Proof: Assume that U is a complement of H/K in G. We consider the G-group B whose underlying group is H/K with the action of G defined by

$$\theta: G \to \operatorname{Aut} B$$

given by $b^{\theta(g)} = b^u$, and the 1-cocycle

$$\beta: G \to B$$

given by $g^{\beta} = hK$, if $g \in G$, g = uh, $u \in U$, $h \in H$. It is immediate that both are well-defined mappings, that θ is a homomorphism and that β is a 1-cocycle.

Let now

$$\varphi \colon H/K \to B$$

given by $(xK)^{\varphi} = xK$, if $x \in H$. With the above notations, we have

$$(xK)^{g\varphi} = (xK)^g = (xK)^{uh} = [(xK)^u]^{(hK)} = [(xK)^{\varphi\theta(g)}]^{g^{\beta}},$$

hence $H/K \cong_G B_{\beta}$ and $H/K \sim_G B$ by (1.2). On the other hand,

$$C_G(B) = \{uh \mid u \in U, h \in H, (xK)^u = xK \ \forall x \in H\} = C_U(H/K)H;$$

in particular, $H \leq C_G(B)$.

Assume conversely, with (1.2), that we have a G-group B and a G-isomorphism $\varphi \colon B \to (H/K)_{\alpha}$, where $\alpha \in \mathrm{Z}^1(G,H/K)$, such that $H \leq \mathrm{C}_G(B)$. If $b \in B$, $h \in H$, we have

$$b^{\varphi} = (b^h)^{\varphi} = b^{\varphi h h^{\alpha}}.$$

hence $hh^{\alpha} \in \mathcal{C}_{H/K}(H/K) = 1$, as H/K is a nonabelian chief factor of G. Therefore, $h^{\alpha} = h^{-1}K$ if $h \in H$.

Take $U = \ker \alpha$. Let $g \in G$ and $g^{\alpha} = hK$, $h \in H$. We have

$$(gh)^{\alpha} = g^{\alpha h}h^{\alpha} = (hK)(h^{-1}K) = 1,$$

hence
$$G = HU$$
. If $u \in U \cap H$, then $1 = u^{\alpha} = u^{-1}K$, and $H \cap U = K$.

Observe that this is precisely a result for nonabelian chief factors: If H/K is an abelian chief factor of G, then $H \leq C_G(H/K)$, hence with this hypothesis the 'only if' implication in the above proposition is also true if H/K is frattini whereas the converse is false.

Given a group G, the socle S(G) of G is the product of all minimal normal subgroups of G. Recall that a group G is said to be primitive if it has a maximal subgroup with core trivial. The socle of a primitive group G can be either (I) an abelian minimal normal subgroup of G, or (II) a nonabelian minimal normal subgroup of G, or (III) the product of exactly two nonabelian minimal normal subgroups of G. We say then respectively that G is primitive of type I, II or III. Two chief factors are said to be G-related if either they are G-isomorphic between them or to the two minimal normal subgroups of a primitive epimorphic image of type III of G [2], [7]. We set

$$\mathcal{CF}(G) := \{H/K \mid H, K \unlhd G, \ H/K \text{ chief factor of } G\}.$$

Let $I_G(A) = \{g \in G \mid g \text{ induces an inner automorphism in } A\}$, where A is a G-group. It is immediate from (1.2) that if A and B are two G-equivalent G-groups, then $I_G(A) = I_G(B)$.

- (1.4) PROPOSITION: Let $F_1, F_2 \in \mathcal{CF}(G)$. Then the following assertions are equivalent by pairs:
 - (1) $F_1 \sim_G F_2$.
 - (2) F_1 and F_2 are G-related.
 - (3) Either $F_1 \cong_G F_2$ or there exist $E_i \in \mathcal{CF}(G)$ such that $F_i \cong_G E_i$ (i = 1, 2) and E_1 and E_2 have a common complement in G which is a maximal subgroup of G.
 - (4) Either $F_1 \cong_G F_2$ or there exist $E_i \in \mathcal{CF}(G)$ such that $F_i \cong_G E_i$ (i = 1, 2) and E_1 and E_2 have a common complement in G.

Proof: We have that two abelian chief factors of G are G-equivalent if and only if they are G-isomorphic if and only if they are G-related. On the other hand, a

complement U of an abelian chief factor H/K of G is a maximal subgroup of G and, if $E = \operatorname{core}_G(U)$, then G/E is primitive of type I with socle S(G/E) = C/E, where $C = \operatorname{C}_G(H/K)$, and we have $C/E \cong_G H/K$. So we may assume that the factors are nonabelian and not G-isomorphic. Let $F_1 = H/K$, $F_2 = L/M$, where $H, K, L, M \subseteq G$.

(1) \Longrightarrow (2) Set $A = C_G(H/K)$ and $B = C_G(L/M)$. Then $A \neq B$. We have $I_G(H/K) = I_G(L/M) =: I$. So

$$A/A \cap B \cong_G I/B \cong_G L/M$$
, $B/A \cap B \cong_G I/A \cong_G H/K$.

We must show that $G/A \cap B$ is primitive of type III. We may assume that $A \cap B = 1$. Then $C_G(A) = B$ and $C_G(B) = A$. As we are with an equivalence relation, $B \sim_G A$. Then there exist $\alpha \in Z^1(G,B)$ and a G-isomorphism $\varphi \colon B \to A_\alpha$. As we see in the proof of (1.3), $U = \ker \alpha$ complements A in G. Let now $b \in B$ and $u \in B \cap U$. We have that

$$b^{\varphi} = b^{\varphi u} = b^{\varphi u u^{\alpha}} = b^{u \varphi},$$

hence $b = b^u$. So $u \in C_G(B) = A$, hence u = 1 and $B \cap U = 1$. Hence U is a maximal subgroup of G with trivial core.

- $(2) \Longrightarrow (3)$ follows immediately from the definition and $(3) \Longrightarrow (4)$ is trivial.
- $(4) \Longrightarrow (1)$ Assume that a subgroup U of G complements both H/K and L/M, where $H/K \cong_G F_1$ and $L/M \cong_G F_2$. So, with $E = \operatorname{core}_G(U)$, U complements EH/E and EL/E. Consider

$$\varphi : EL/E \to EH/E$$
 and $\beta : G \to EH/E$

given, respectively, by $(xE)^{\varphi} = yE$, if $x \in L$, $y \in H$ and $xy \in U$, and $g^{\beta} = yE$ if $g \in G$, $y \in H$ and $gy \in U$. Then $\beta \in Z^{1}(G, EH/E)$ and $\varphi : EL/E \to (EH/E)_{\beta}$ is a G-isomorphism, that is, $EL/E \sim_{G} EH/E$.

(In the proof (1) \Longrightarrow (2) it is not sufficient to show that $G/A \cong G/B$ is a primitive group of type II, s. [2] 1.2(b).)

(1.5) Definition: Let A be an irreducible G-group. Put $I = I_G(A)$. We set

$$D_G(A) = \bigcap \{R \mid R \leq I, R \leq G, A \sim_G I/R, I/R \text{ is non-frattini}\},$$

$$E_G(A) = \{g \in G \mid g^{\alpha} = 1 \ \forall \alpha \in \mathbf{Z}^1(G, A)\}.$$

Observe that if $A \sim_G B$, then $D_G(A) = D_G(B)$. The quotient $I_G(A)/D_G(A)$ is the so-called A-crown of G(A) generalization of a concept due to Gaschütz [3])

of interest on some questions of Schunck classes or of classes of groups in general [2], [7]. When A is abelian, in fact an irreducible $\mathbb{F}_{l}\mathbb{G}$ -module, this crown appears in relation to the principal indecomposable modules of the group algebra $\mathbb{F}_{l}\mathbb{G}$ [1], [6], [9].

If $\alpha \in \mathbb{Z}^1(G, A)$, $\beta \mapsto \alpha \cdot \beta$ defines a bijection between $\mathbb{Z}^1(G, A_{\alpha})$ and $\mathbb{Z}^1(G, A)$ [12], so $\mathbb{E}_G(A) = \mathbb{E}_G(B)$ if $A \sim_G B$.

Let A be a G-group. We put $A^G = \operatorname{H}^0(G,A)$. Let $N \leq G$. Then A is, by restriction, an N-group and $\operatorname{Z}^1(N,A)$ is a G-set with $n^{(\nu^g)} = (n^{g^{-1}})^{\nu g}$, if $n \in N, \ \nu \in \operatorname{Z}^1(N,A), \ g \in G$. Recall that $\operatorname{H}^1(G,A) = \operatorname{Z}^1(G,A)/\sim$, where if $\nu,\nu' \in \operatorname{Z}^1(N,A)$, then $\nu \sim \nu'$ if there exists $a \in A$ such that $n^{\nu'} = (a^{-1})^n n^{\nu} a$. In this case we have

$$n^{\nu'^g} = (n^{g^{-1}})^{\nu'^g} = ((a^{-1})^{n^{g^{-1}}} n^{g^{-1}\nu} a)^g = (a^{-1})^{gn} n^{\nu^g} a^g,$$

hence $\nu^g \sim \nu'^g$, that is, $\mathrm{H}^1(N,A)$ is also a G-set.

As for G-modules [5] we have the following

(1.6) Lemma: Let

$$N \rightarrowtail G \twoheadrightarrow G/N$$

be a short exact sequence of groups, where $N \subseteq G$ and the arrows are the canonical inclusion and projection. If A is a G-group, we have the following exact sequences of pointed sets:

$$0 \longrightarrow \operatorname{Z}^1(G/N, A^N) \xrightarrow{\operatorname{inf}} \operatorname{Z}^1(G, A) \xrightarrow{\operatorname{res}} \operatorname{Z}^1(N, A),$$
$$0 \longrightarrow \operatorname{H}^1(G/N, A^N) \xrightarrow{\operatorname{inf}} \operatorname{H}^1(G, A) \xrightarrow{\operatorname{res}} \operatorname{H}^1(N, A)^G,$$

where inf and res denote the corresponding inflation and restriction maps.

Proof: It is a routine check.

(1.7) THEOREM: Let A be an irreducible G-group and $N \subseteq G$, $N \subseteq C_G(A)$. Then the following assertions are equivalent by pairs:

$$(1)N < E_G(A), (2)Z^1(G,A) = Z^1(G/N,A), (3)H^1(G,A) = H^1(G/N,A).$$

Proof: If suffices to consider the lemma and note that the inflation is bijective if and only if the restriction is null and that is equivalent to $N \leq \ker(\alpha) \ \forall \alpha \in \mathbf{Z}^1(G,A)$.

As a consequence of [9] we have:

(1.8) COROLLARY: If A is an abelian irreducible G-group, then $E_G(A) = D_G(A)$.

In the following we are interested in the nonabelian case.

Recall that, if A is a G-group, then $\alpha \colon G \to A$ is a 1-cocycle if and only if $\alpha^* \colon G \to GA$ given by $g^{\alpha^*} = gg^{\alpha}$ is a homomorphism, and that $\alpha \mapsto G^{\alpha^*}$ defines a bijection between $Z^1(G,A)$ and the set of complements of A in GA. Observe that then $\ker \alpha = G^{\alpha^*} \cap G$. We can give the following characterization:

(1.9) Theorem: Let A be a nonabelian irreducible G-group. Then

$$E_G(A) = \bigcap \{ C_G(B) \mid B \sim_G A \}.$$

Proof: By (1.3) we have that

$$\bigcap \{ \mathcal{C}_G(B) \mid B \sim_G A \} = \bigcap \{ \mathcal{C}_G(A_\alpha) \mid \alpha \in \mathcal{Z}^1(G,A) \}.$$

Consider the semidirect product GA. From the remark above this theorem we have immediately that

$$E_G(A) = \bigcap \{H \mid H \text{ is a complement of } A \text{ in } GA\}.$$

In particular $E_G(A) \subseteq GA$ and $E_G(A) \cap A = 1$. As $E_G(A) \subseteq G$, we have that $E_G(A) \subseteq C_G(A)$. On the other hand, if $\alpha \in Z^1(G,A)$ and $g \in \ker \alpha$, then $g \in C_G(A)$ if and only if $g \in C_G(A_\alpha)$. So we have that

$$E_G(A) \le \bigcap \{C_G(A_\alpha) \mid \alpha \in Z^1(G, A)\}.$$

Assume now that $g \in \bigcap \{ C_G(A_\alpha) \mid \alpha \in Z^1(G,A) \}$. Then $a^{gg^\alpha} = a \ \forall a \in A$, $\forall \alpha \in Z^1(G,A)$. With $\alpha = 0$ we obtain that in particular $a^g = a \ \forall a \in A$. Therefore $a^{g^\alpha} = a \ \forall a \in A$. Then $g^\alpha \in Z(A) = 1$ as A is semisimple. Hence $g \in E_G(A)$.

(1.10) LEMMA: Let A be an irreducible G-group such that $C_G(A) < I_G(A)$. Then $D_G(A) \le C_G(A)$ if and only if $I_G(A)/C_G(A) \cong_G A$.

Proof: Put $I = I_G(A)$, etc. If $I/C \cong_G A$, as I/C is nonabelian, then it is not frattini, hence $D \leq C$, by the definition of $D_G(A)$.

Assume now that $D \leq C$. Then $I \neq C$, as A is nonabelian. As I/D is a completely reducible G-group, we have $I/C \cong_G A$.

(1.11) COROLLARY: Let A be a nonabelian irreducible G-group such that $\{B \in \mathcal{CF}(G) \mid B \sim_G A\} \neq \emptyset$. Then

$$D_G(A) = \bigcap \{ C_G(B) \mid B \sim_G A, B \in \mathcal{CF}(G) \}.$$

(1.12) Definition: Let A be a nonabelian irreducible G-group. We set

$$J_G(A) = \bigcap \{ C_G(B) \mid B \sim_G A, \ B \not\cong_G F, \ F \in \mathcal{CF}(G) \}$$

if $\{B \mid B \sim_G A, \ B \not\cong_G F, \ F \in \mathcal{CF}(G)\} \neq \emptyset$ and we put $J_G(A) = I_G(A)$ otherwise.

(1.13) Proposition: Let A be a nonabelian irreducible G-group. Then

$$I_G(A) = J_G(A) D_G(A)$$
 and $J_G(A) \cap D_G(A) = E_G(A)$.

Proof: It is clear that $J_G(A) \cap D_G(A) = E_G(A)$. Let $B \sim_G A$ such that $B \not\cong_G F$ if $F \in \mathcal{CF}(G)$ and set $S = C_G(B)$. Put $I = I_G(A)$, etc. We have that I/S is G-isomorphic to a proper subgroup of B. Then, as DS is a normal G-subgroup of I and I/D is a completely reducible G-group with its irreducible components G-equivalent to A, we have DS = I.

Assume that DJ < I. Let I/R be a chief factor of G such that $DJ \leq R$. Then $I/R \cong A$, because $D \leq R$. As $J \leq R$, there exists $B \sim_G A$, $B \not\cong_G F$ if $F \in \mathcal{CF}(G)$, such that $I/\mathbb{C}_G(B)$ has a factor isomorphic to I/R, in contradiction to $|I/\mathbb{C}_G(B)| < |A|$.

2. On complemented chief factors

We say that a chief factor of G is a c-factor, resp. m-factor, if it is complemented in G by a subgroup, resp. maximal subgroup, of G; otherwise we say that it is a c'-factor, resp. m'-factor. Observe that an abelian chief factor is an m-factor, resp. m'-factor, if and only if it is a c-factor, resp. frattini.

As a consequence of [8], if $H, K \subseteq G$, $H \subseteq K$, given two chief series of a group G

$$H = X_0 < X_1 < \dots < X_n = K,$$

 $H = Y_0 < Y_1 < \dots < Y_m = K,$

between H and K, then n=m and there exists a unique permutation π in \mathfrak{S}_n such that:

- (1) $X_i/X_{i-1} \sim_G Y_{i^{\pi}}/Y_{i^{\pi}-1}$.
- (2) X_i/X_{i-1} and $Y_{i^{\pi}}/Y_{i^{\pi}-1}$ are simultaneously m-factors or m'-factors.
- (3) If X_i/X_{i-1} and $Y_{i^{\pi}}/Y_{i^{\pi}-1}$ are m-factors, they have a maximal subgroup of G as common complement.

In particular, the number of m-factors in any chief series of G is the same. But this is no longer true for c-factors in spite of the equivalence between (3) and (4) in (1.4).

If A^*/A and B^*/B are chief factors of G, we put $B^*/B \searrow A^*/A$ if $A^*B = B^*$ and $A^* \cap B = A$.

- (2.1) LEMMA: Assume that B^*/B is a c'-factor and A^*/A is a c-factor of G such that $B^*/B \searrow A^*/A$, and that they are nonabelian. Let $I = I_G(A^*/A)$ and $C = C_G(A^*/A)$. Then there exists a normal subgroup X of G, $X \leq I$, such that, with $N = X \cap C$, one has $I/C \searrow B^*/B$, $X/N \searrow A^*/A$ and:
 - (1) $I/C \setminus X/N$, I/C is a c'-factor and X/N is a c-factor.
 - (2) G/C is a primitive group of type II and S(G/C) = I/C.
 - (3) There exists a supplement F of I/C in G such that G/N is isomorphic to the natural semidirect product of F/C by I/C.

Proof: Observe that $I/C \searrow B^*/B$, hence I/C is a c'-factor. Take a chief series between A and C. By multiplying by A^* there results another one between A^* and I. The formed transoms are chief factors of G. As I/C is a c'-factor but A^*/A is a c-factor, we obtain chief factors M/X and Y/N such that

$$I/C \setminus M/Y \setminus X/N \setminus A^*/A$$
,

M/Y is a c'-factor and X/N is a c-factor. We may assume that N=1.

Let U be a complement of X in G. Consider $K = U \cap C$. X centralizes and U normalizes K, hence $K \subseteq G$. We have U(KX) = G and $U \cap KX = K(U \cap X) = K$, hence KX/K is a c-factor. As $I/C \searrow KX/K$, we may assume that K = 1.

Observe finally that $ux \mapsto (uC)(xC)$, where $u \in U$ and $x \in X$, defines an isomorphism between G = UX and the natural semidirect product (UC/C)[I/C].

We can construct the situation of the lemma, similarly to an unpublished example of Förster, which turns out to be characteristic of this context. Let G_0 be a group, $X_0 \subseteq G_0$ and let H_0 be a supplement of X_0 in G_0 . Set $L_0 = H_0 \cap X_0$.

Consider the semidirect product

$$G = H_0[X_0] = \{ (h, x) \mid h \in H_0, x \in X_0 \}.$$

Put $H = \{ (h,1) \mid h \in H_0 \}$, $X = \{ (1,x) \mid x \in X_0 \}$. We have that G = HX, $H \cap X = 1$, $X \triangleleft G$.

Let now $B = \{(d,1) \mid d \in L_0\}, L = \{(1,d) \mid d \in L_0\}.$ We have that $C = \{(d,d^{-1}) \mid d \in L_0\}$ verifies:

- (1) $C \subseteq G$, $X \cap C = 1$, I := XC = XB, $B = H \cap I$.
- (2) $X \cap BC = L, BL = BC, L \subseteq HC, [L, C] = 1.$

 $(3) L \cong_H B \cong_H C.$

Assume now that G_0 is a primitive group of type II and that $S(G_0) = X_0$ is not complemented in G_0 ($G_0 = \text{Aut } A_6$, $X_0 = \text{Inn } A_6$, for instance). Then we are in a situation like the lemma.

- (2.2) PROPOSITION: Assume that, in the above situation, X_i/X_{i-1} and $Y_{i\pi}/Y_{i\pi-1}$ are m'-factors. Then, either
 - (a) both factors are c'-factors, or
 - (b) both factors are nonabelian c-factors, or
 - (c) both factors are nonabelian, one of them is a c-factor, the other one is a c'-factor and there exist normal subgroups I, C, X and N of G verifying (1)-(3) of the lemma.

Proof: Assume that X_i/X_{i-1} is a c'-factor and $Y_{i^{\pi}}/Y_{i^{\pi}-1}$ is a c-factor. Then, as we see in [8], either there exist R^* , R, normal subgroups of G with

$$R^*/R \searrow X_i/X_{i-1}, \qquad R^*/R \searrow Y_{i^{\pi}}/Y_{i^{\pi}-1},$$

or there exist S^* , S, normal subgroups of G with

$$X_i/X_{i-1} \searrow S^*/S$$
, $Y_{i^{\pi}}/Y_{i^{\pi}-1} \searrow S^*/S$,

where R^*/R and S^*/S are m'-factors, or there exist S^* , S, Z, T normal subgroups of G with

$$X_i/X_{i-1} \searrow S^*/Z \searrow T/S, \qquad Y_{i^{\pi}}/Y_{i^{\pi}-1} \searrow S^*/T \searrow Z/S,$$

where S^*/Z and S^*/T are m'-factors, and Z/S and T/S are m-factors (this is called an m-crossing in [8]). In the first cases we have that R^*/R must be a c'-factor, whereas S^*/S must be a c-factor. In the last case, the m-factors in the crossing Z/S and T/S have a maximal subgroup as common complement, hence $G/Z \cong G/T$. On the other hand, $Y_{i^{\pi}}/Y_{i^{\pi}-1}$ is a c-factor, then so is S^*/T . Therefore also S^*/Z is a c-factor, whereas X_i/X_{i-1} is a c'-factor. We are then in either case in the situation of the lemma.

(2.3) Definition: Let A be an irreducible G-group. We say that A is of cc'-type in G if there exist two chief series of G in which one has the case (c) of the precedent proposition with $A \sim_G X_i/X_{i-1}$. (Clearly this forces A to be nonabelian.)

(2.4) Proposition: Let v be the number of equivalence classes of irreducible G-groups of cc'-type. Then the number of complemented chief factors on two chief series of G differs by at most v.

Proof: It is a consequence of the proposition, as on a chief series of G for each nonabelian crown there is at most one m'-factor. If the crown corresponds to a factor of cc'-type, this shows that on each chief series there is at most one c'-factor corresponding to the crown.

(2.5) Theorem: Let A be a nonabelian irreducible G-group. Then A is of cc'-type in G if and only if

$$E_G(A) < D_G(A) < I_G(A)$$

and S(P) is a c'-factor of P, where P is the corresponding primitive epimorphic image of G.

Proof: Put $E = E_G(A)$, etc. Assume that E < D < I. Then there exist normal subgroups R and H of G such that $I/R \sim_G A$, $H = C_G(B)$, $B \sim_G A$, $B \not\cong_G F$ if $F \in \mathcal{CF}(G)$, H < I. Put $K = H \cap R$. Then we have $A \sim_G H/K$. By (1.3), H/K is a c-factor of G. As I/R is a c'-factor we are with a cc'-situation.

Conversely, if A is of cc'-type, we obtain normal subgroups I, R, H and K of G and a subgroup U of G such that $I/R \sim_G A$, I/R and H/K are m'-factors, I/R is a c'-factor, $I/R \searrow H/K$ and U complements H/K in G. Observe that $R = \mathrm{C}_G(I/R) = \mathrm{C}_G(H/K)$. As in the proof of (1.3) we obtain a G-group B, $B \sim_G A$, such that

$$C_G(B) = H C_U(H/K) = H(U \cap R) = HK = H.$$

Suppose now that there exists $F \in \mathcal{CF}(G)$ such that $F \cong_G B$. Then $I_G(F) = I_G(B) = I$ and $C_G(F) = C_G(B) = H$, hence $F \cong_G I/H$. Therefore $I/H \sim_G I/R$, hence G/K is a primitive group of type III and H/K is an m-factor, contrary to the hypothesis. And we have that $D_G(A) \leq R < I$, $J_G(A) \leq H < I$.

- (2.6) THEOREM: Let G a primitive group of type II and M = S(G). Let $M = T_1 \times \cdots \times T_n$, where $T_i \cong T$, $1 \leq i \leq n$, $T = T_1$ a simple group. Put $N = N_G(T)$, $I = I_G(T)$, $C = C_G(T)$. Then the following assertions are equivalent:
 - (1) M is a c-factor of G,
 - (2) either I/C is a c-factor of N, or I/C is a c'-factor of N and there exists an N-group $S \sim_N T$ such that $M \leq C_N(S) < I$.

Proof: Put $K = T_2 \times \cdots \times T_n$. By [4], M is a c-factor of G if and only if M/K is a c-factor of N. By (1.3), M/K is a c-factor if and only if there exists an

N-group $S \sim_N T$ such that $M \leq C_N(S)$. Observe that then $S \sim_N T$ and that, if I/C is a c'-factor, then $C_N(S) < I$.

References

- [1] M. Aschbacher and R. Guralnick, Some applications of the first cohomology group, Journal of Algebra **90** (1984), 446–460.
- [2] P. Förster, Chief factors, crowns, and the generalised Jordan-Hölder Theorem, Communications in Algebra 16 (1988), 1627–1638.
- [3] W. Gaschütz, Praefrattinigruppen, Archiv der Mathematik 13 (1962), 418–426.
- [4] F. Gross and L. G. Kovács, On normal subgroups which are direct products, Journal of Algebra 90 (1984), 133–168.
- [5] K. W. Gruenberg, Cohomological Topics in Group Theory, Lecture Notes in Mathematics 143, Springer-Verlag, Berlin, 1970.
- [6] K. W. Gruenberg, Groups of non-zero presentation rank, Symposia Mathematica 17 (1976), 215–224.
- [7] J. P. Lafuente, Nonabelian crowns and Schunck classes of finite groups, Archiv der Mathematik 42 (1984), 32–39.
- [8] J. P. Lafuente, Maximal subgroups and the Jordan-Hölder Theorem, Journal of the Australian Mathematical Society 46 (1989), 356-364.
- [9] J. P. Lafuente, On the second Loewy term of projectives of a group algebra, Israel Journal of Mathematics 67 (1989), 170–180.
- [10] H. Neumann, Varieties of Groups, Springer-Verlag, Berlin, 1967.
- [11] D. J. S. Robinson, A Course in the Theory of Groups, Springer-Verlag, New York, 1995.
- [12] J. P. Serre, Cohomologie Galoisienne, Lecture Notes in Mathematics 5, Springer-Verlag, Berlin, 1964.